Retinoic Acid Combined with Neurotrophin-3 Enhances the Survival and Neurite Outgrowth of Embryonic Sympathetic Neurons

Author:

Plum Lori A.12,Parada Luis F.2,Tsoulfas Pantelis3,Clagett-Dame Margaret14

Affiliation:

1. Interdepartmental Graduate Program in Nutritional Sciences

2. Department of Biochemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53706

3. Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892–4092

4. Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75235–9133

Abstract

Both nerve growth factor (NGF) and neurotrophin-3 (NT-3) are necessary for the survival of embryonic sympathetic neurons in vivo. All-trans retinoic acid (atRA) has been shown to promote neurite outgrowth and long-term survival of chick embryonic sympathetic neurons cultured in the presence of NGF. The present study shows that atRA can also potentiate the survival and neurite outgrowth-promoting activities of NT-3. This was accomplished by enhancing the survival of existing neurons, as cell proliferation was unaffected by exposure to atRA. atRA also enhanced neurite outgrowth of the NT-3-treated cells; however, the neurites appeared thicker and less branched than cells treated with atRA in combination with NGF. Using a quantitative PCR assay, trkA and p75NTR mRNAs, but not trkC mRNA, were increased (~1.5- to 2-fold) after 72 and 48 hr of exposure of the cultures to atRA, respectively. The atRA-induced increase in trkA mRNA may play a role in the enhanced survival of neurons cultured in the presence of either NGF or NT-3, as both neurotrophins have been shown to signal through this receptor. The time course of these mRNA changes would indicate that atRA does not regulate the neurotrophin receptor mRNA directly, rather, intervening gene transcription is required. Thus, during development, atRA may play a role in fine-tuning embryonic responsiveness to both NT-3 and NGF.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3