Affiliation:
1. Anesthesiology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, P. R. China
Abstract
Cardiopulmonary bypass can result in damage to the intestines, leading to the occurrence of systemic inflammatory response syndrome. Dexmedetomidine is reported to confer anti-inflammatory properties. Here, the purpose of this study is to investigate the effect of dexmedetomidine on the intestinal mucosa barrier damage in a rat model of cardiopulmonary bypass. It was observed that cardiopulmonary bypass greatly decreased the levels of hemodynamic parameters than SHAM group, whereas dexmedetomidine pretreatment in a cardiopulmonary bypass model rat prevented this reduction. Also, it showed that compared with control animals, cardiopulmonary bypass caused obvious mucosal damage, which was attenuated in dexmedetomidine + cardiopulmonary bypass group. The above findings were in line with that of dexmedetomidine pretreatment, which increased the expression of tight junction proteins, but it decreased the levels of DAO, D-LA, FABP2, and endotoxin. Moreover, the results demonstrated that due to pre-administration of dexmedetomidine, the level of pro-inflammatory factors was decreased, while the level of anti-inflammatory cytokine was increased. Also, it showed that dexmedetomidine suppressed TLR4/JAK2/STAT3 pathway that was activated by cardiopulmonary bypass. Together, these results revealed that dexmedetomidine pretreatment relieves intestinal microcirculation, attenuates intestinal damage, and inhibits the inflammatory response of cardiopulmonary bypass model rats, demonstrating that in CPB-induced damage of intestinal mucosal barrier function, dexmedetomidine pretreatment plays a protective role by inactivating TLR4/JAK2/STAT3-mediated inflammatory pathway.
Funder
Self-Funded Program of Hebei Province's Key Research and Development Plan
Zhangjiakou Science and Technology Plan Program
Hebei Provincial Government Funded Training Program of Clinical Medical Talent in 2020
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献