Role of Matrix Metalloproteinase-7 (Matrilysin) in Human Cancer Invasion, Apoptosis, Growth, and Angiogenesis

Author:

Ii Masanori1,Yamamoto Hiroyuki1,Adachi Yasushi1,Maruyama Yumiko1,Shinomura Yasuhisa1

Affiliation:

1. First Department of Internal Medicine, Sapporo Medical University, School of Medicine, Sapporo 060-8543, Japan

Abstract

Matrix metalloproteinase (MMP)-7, also known as matrilysin, is a “minimal domain MMP” that exhibits proteolytic activity against components of the extracellular matrix (ECM). Matrilysin is frequently overexpressed in human cancer tissues and is associated with cancer progression. Tumorigenesis is a multi-step process involving cell growth, invasion, metastasis, and angiogenesis. Matrilysin has been shown to play important roles not only in degradation of ECM proteins, but also in the regulation of several biochemical processes such as activation, degradation, and shedding of non-ECM proteins. This minireview provides a summary of the current literature on the roles of matrilysin in tumorigenesis with a focus on the roles of modifications of non-ECM proteins by matrilysin and other related MMPs in tumorigenesis. Proteolysis of insulin-like growth factor binding protein by matrilysin results in increased bioavailability of insulin-like growth factors and enhanced cellular proliferation. Matrilysin has also been implicated in the ectodomain shedding of several cell surface molecules. Heparin-binding epidermal growth factor precursor (proHB-EGF) is cleaved by matrilysin into mature HB-EGF, which promotes cellular proliferation. Membrane-bound Fas ligand (FasL) is cleaved into soluble FasL, which increases apoptosis of cells adjacent to tumor cells. E-cadherin is converted to soluble E-cadherin to promote invasion. Tumor necrosis factor (TNF)-alpha precursor is cleaved to release soluble TNF-alpha to increase apoptosis. We propose that these matrilysin-mediated pathways provide the necessary and logical mechanisms to promote cancer progression.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 293 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3