Genomics and Clinical Medicine: Rationale for Creating and Effectively Evaluating Animal Models

Author:

Swanson Kelly S.1,Mazur Meredith J.1,Vashisht Kapil12,Rund Laurie A.1,Beever Jonathan E.3,Counter Christopher M.4,Schook Lawrence B.12

Affiliation:

1. Laboratory of Comparative Genomics, University of Illinois, Urbana, Illinois 61801

2. Department of Veterinary Pathobiology, University of Illinois, Urbana, Illinois 61801

3. Laboratory of Molecular Genetics, Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801

4. Department of Pharmacology and Oncology, Duke University Medical Center, Durham, North Carolina 27710

Abstract

Because resolving human complex diseases is difficult, appropriate biomedical models must be developed and validated. In the past, researchers have studied diseases either by characterizing a human clinical disease and choosing the most appropriate animal model, or by characterizing a naturally occurring or induced mutant animal and identifying which human disease it best resembled. Although there has been a great deal of progress through the use of these methods, such models have intrinsic faults that limit their relevance to clinical medicine. The recent advent of techniques in molecular biology, genomics, transgenesis, and cloning furnishes investigators with the ability to study vertebrates (e.g., pigs, cows, chickens, dogs) with greater precision and utilize them as model organisms. Comparative and functional genomics and proteomics provide effective approaches for Identifying the genetic and environmental factors responsible for complex diseases and in the development of prevention and treatment strategies and therapeutics. By identifying and studying homologous genes across species, researchers are able to accurately translate and apply experimental data from animal experiments to humans. This review supports the hypothesis that associated enabling technologies can be used to create, de novo, appropriate animal models that recapitulate the human clinical manifestation. Comparative and functional genomic and proteomic techniques can then be used to identify gene and protein functions and the Interactions responsible for disease phenotypes, which aids in the development of prevention and treatment strategies.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3