A review on photo-mediated ultrasound therapy

Author:

Singh Rohit1ORCID,Yang Xinmai1

Affiliation:

1. Department of Mechanical Engineering, Institute for Bioengineering Research, The University of Kansas, Lawrence, KS 66045, USA

Abstract

Photo-mediated ultrasound therapy (PUT) is a novel therapeutic technique based on the combination of ultrasound and laser. The underlying mechanism of PUT is the enhanced cavitation effect inside blood vessels. The enhanced cavitation activity can result in bio-effects such as reduced perfusion in microvessels. The reduced perfusion effect in microvessels in the eye has the potential to control the progression of eye diseases such as diabetic retinopathy and age-related macular degeneration. Several in vivo studies have demonstrated the feasibility of PUT in removing microvasculature in the eye using rabbit eye model and vasculature in the skin using rabbit ear model. Numerical studies using a bubble dynamics model found that cavitation is enhanced during PUT due to the dramatic increase in size of air/vapor nuclei in blood. In addition, the study conducted to model cavitation dynamics inside a blood vessel during PUT found stresses induced on the vessel wall during PUT are higher than that at normal physiological levels, which may be responsible for bio-effects. The concentration of vasodilators such as nitric oxide and prostacyclin were also found to be affected during PUT in an in vitro study, which may limit blood perfusion in vessels. The main advantage of PUT over conventional techniques is non-invasive, precise, and selective removal of microvessels with high efficiency at relatively low energy levels of ultrasound and laser, without affecting the nearby structures. However, the main limitation of vessel rupture/hemorrhage needs to be overcome through the development of real-time monitoring of treatment effects during PUT. In addition to the application in removing microvessels, PUT-based techniques were also explored in treating other diseases. Studies have found a combination of ultrasound and laser to be effective in removing blood clots inside veins, which has the potential to treat deep-vein thrombosis. The disruption of atherosclerotic plaque using combined ultrasound and laser was also tested, and the feasibility was demonstrated.

Funder

National Eye Institute

Publisher

Frontiers Media SA

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3