Methionine restriction affects oxidative stress and glutathione-related redox pathways in the rat

Author:

Maddineni Sreenivasa12,Nichenametla Sailendra34,Sinha Raghu5,Wilson Ronald P6,Richie John P3

Affiliation:

1. Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033

2. Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224

3. Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033

4. Department of Health and Nutritional Sciences, South Dakota State University, Brookings, SD 57007

5. Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033

6. Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA

Abstract

Lifelong dietary methionine restriction (MR) is associated with increased longevity and decreased incidence of age-related disorders and diseases in rats and mice. A reduction in the levels of oxidative stress may be a contributing mechanistic factor for the beneficial effects of MR. To examine this, we determined the effects of an 80% dietary restriction of Met on different biomarkers of oxidative stress and antioxidant pathways in blood, liver, kidney and brain in the rat. Male F-344 rats were fed control (0.86% methionine) or MR (0.17% methionine) diets for up to six months. Blood and tissues were analyzed for glutathione (GSH) concentrations, related enzyme activities and biomarkers of oxidative stress. MR was associated with reductions in oxidative stress biomarkers including plasma 8-hydoxydeoxyguanosine (8-OHdG) and 8-isoprostane and erythrocyte protein-bound glutathione after one month with levels remaining low for at least six months ( P < 0.05). Levels of free GSH in blood were increased after 1–6 months of MR feeding whereas liver GSH levels were reduced over this time ( P < 0.05). In MR rats, GSH peroxidase activity was decreased in liver and increased in kidney compared with controls. No changes in the activities of GSH reductase in liver and kidney and superoxide dismutase in liver were observed as a result of MR feeding. Altogether, these findings indicate that oxidative stress is reduced by MR feeding in rats, but this effect cannot be explained by changes in the activity of antioxidant enzymes.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3