Protective effect of truncated Na+/K+‐ATPase β on ischemia/reperfusion-induced renal injury in rats

Author:

Gong Huilin1,Sun Jingjing2,Xue Wujun2,Tian Puxun2,Ding Xiaoming2,Yan Hang2,Li Yang2,Zheng Jin2

Affiliation:

1. Department of Pathology, The First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an 710061, China

2. Hospital of Nephrology, The First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an 710061, China

Abstract

Renal ischemia/reperfusion(I/R) is an important injury part of ischemic acute renal failure, and it is also the main factor that affects the early functional recovery and the long-term survival of transplanted kidney in renal transplantation. In this study, we cloned and expressed truncated Na+/K+‐ATPase β(tNKAβ) and demonstrated that tNKAβ could activate NKA α subunit and induce protective effect on human kidney-2(HK-2) cells via PKCɛ signal pathway. The half maximum effective concentrations (EC50) of tNKAβ were 0.24 µM. Furthermore, the application of EAVSLKPT (PKCɛ inhibitor) could abolish the protective effect of tNKAβ in HK-2 cells subjected to ischemia/reperfusion. To identify the protective effect of tNKAβ against the I/R injury in the kidney, Sprague-Dawley rats were treated with tNKAβ (75 mg/kg) for 2 h before ischemia. The tNKAβ-treated group demonstrated a significant improvement in renal function with a lower serum creatinine and blood urea nitrogen (BUN) levels on postoperative days 1–6. Renal sections obtained from rats of the I/R group showed serious renal injury which included degeneration of tubular structure, tubular dilation, swelling and necrosis, luminal congestion, and muddy brown casts formed by sloughing of severely damaged tubular epithelial cells. However, sections of rats that were administered with tNKAβ 2 h before reperfusion showed marked reduction of the histological features of renal injury compared with kidneys that were subjected to I/R only. In conclusion, the protective effects of tNKAβ against renal I/R injury have been evaluated for the first time, and these protective effects may occur via stimulation of PKCɛ pathways.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3