Celastrol attenuates renal injury in 5/6 nephrectomized rats via inhibiting epithelial–mesenchymal transition and transforming growth factor-β1/Smad3 pathway

Author:

Tang Yue-Wen12ORCID,Yang Ru-Chun23ORCID,Wan Feng23,Tang Xuan-Li23,Zhang Hua-Qin23,Lin Yi23

Affiliation:

1. Department of Nephrology, Dingqiao District of Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310000, China

2. Key Laboratory of Kidney Disease Prevention and Control Technology Zhejiang Province, Hangzhou 310000, China

3. Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310000, China

Abstract

Renal injury is an important factor in the development of chronic kidney diseases that pathologically manifested as renal fibrosis and podocyte damage. In the disease state, renal fibroblasts lead to high expression levels of α-smooth muscle actin (α-SMA), while podocytes undergo epithelial–mesenchymal transition, leading to proteinuria. Celastrol, a bioactive compound in the medicinal plant Tripterygium wilfordii, was found to delay the progression of early diabetic nephropathy and attenuate renal fibrosis in mice with unilateral ureteral obstruction. However, its effect on the renal system in 5/6 nephrectomized (Nx) rats remains unknown. The aim of this study was to explore the protective effects of celastrol and its underlying mechanisms in 5/6 Nx rats. We found that 24 h proteinuria and levels of blood urea nitrogen, serum creatinine, triglycerides, serum P, renal index and cholesterol significantly increased ( P < 0.05), while that of serum albumin decreased significantly in 5/6 Nx rats. After intervention with celastrol, 24 h proteinuria and levels of blood urea nitrogen, serum creatinine, triglycerides, serum P, renal index, and cholesterol significantly decreased, while that of serum albumin significantly increased. Renal tissue pathological staining and transmission electron microscopy showed that celastrol ameliorated kidney injury and glomerular podocyte foot injury and induced significant anti-inflammatory effects. Quantitative polymerase chain reaction (PCR) and western blotting results revealed that nephrin and NEPH1 expression levels were upregulated, whereas α-SMA and Col4a1 expression levels were downregulated in the celastrol group. Celastrol inhibited the expression of transforming growth factor (TGF)-β1/Smad3 signaling pathway-related molecules such as TGF-β1 and P-Smad3. In summary, celastrol contributes to renal protection by inhibiting the epithelial–mesenchymal transdifferentiation and TGF-β1/Smad3 pathways.

Funder

Project of Administration of Traditional Chinese Medicine of Zhejiang Province

Natural Science Foundation of Zhejiang Province

Public Welfare Technology Application Research Program of Zhejiang Province

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3