Transcriptomic profiling of cerebrospinal fluid identifies ALS pathway enrichment and RNA biomarkers in MND individuals

Author:

Fröhlich Alexander12ORCID,Pfaff Abigail L23,Bubb Vivien J1ORCID,Quinn John P1,Koks Sulev23ORCID

Affiliation:

1. Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK

2. Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia

3. Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6009, Australia

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder and the most common form of motor neurone disease (MND) which is characterized by the damage and death of motor neurons in the brain and spinal cord of affected individuals. Due to the heterogeneity of the disease, a better understanding of the interaction between genetics and biochemistry with the identification of biomarkers is crucial for therapy development. In this study, we used cerebrospinal fluid (CSF) RNA-sequencing data from the New York Genome Center (NYGC) ALS Consortium and analyzed differential gene expression between 47 MND individuals and 29 healthy controls. Pathway analysis showed that the affected genes are enriched in many pathways associated with ALS, including nucleocytoplasmic transport, autophagy, and apoptosis. Moreover, we assessed differential expression on both gene- and transcript-based levels and demonstrate that the expression of previously identified potential biomarkers, including CAPG, CCL3, and MAP2, was significantly higher in MND individuals. Ultimately, this study highlights the transcriptomic composition of CSF which enables insights into changes in the brain in ALS and therefore increases the confidence in the use of CSF for biomarker development.

Funder

Multiple Sclerosis Society of Western Australia

Perron Institute for Neurological and Translational Science

Motor Neurone Disease Association

Darby Rimmer Foundation

Andrzej Wlodarski Memorial Research Fund

Publisher

Frontiers Media SA

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3