Promotive Effects of Far-Infrared Ray on Full-Thickness Skin Wound Healing in Rats

Author:

Toyokawa Hideyoshi1,Matsui Yoichi1,Uhara Junya1,Tsuchiya Hideto1,Teshima Shigeru1,Nakanishi Hideki1,Kwon A-Hon1,Azuma Yoshihiko2,Nagaoka Tetsuo3,Ogawa Takafumi3,Kamiyama Yasuo14

Affiliation:

1. First Department of Surgery, Kansai Medical University, Moriguchi City, Osaka, 570-8507, Japan

2. Sagano Co., Ltd., Kobe City, Hyogo, 651-2133, Japan

3. Kyodo Byori, Kobe City, Hyogo, 650-0034, Japan

4. Regeneration Research Center for Intractable Diseases, Kansai Medical University, Moriguchi City, Osaka, 570-8507, Japan

Abstract

The biological effects of far-infrared ray (FIR) on whole organisms remain poorly understood. The aim of our study was to investigate not only the hyperthermic effect of the FIR irradiation, but also the biological effects of FIR on wound healing. To evaluate the effect of FIR on a skin wound site, the speed of full-thickness skin wound healing was compared among groups with and without FIR using a rat model. We measured the skin wound area, skin blood flow, and skin temperature before and during FIR irradiation, and we performed histological inspection. Wound healing was significantly more rapid with than without FIR. Skin blood flow and skin temperature did not change significantly before or during FIR irradiation. Histological findings revealed greater collagen regeneration and infiltration of fibroblasts that expressed transforming growth factor-β1 (TGF-β1) in wounds in the FIR group than in the group without FIR. Stimulation of the secretion of TGF-β1 or the activation of fibroblasts may be considered as a possible mechanisms for the promotive effect of FIR on wound healing independent of skin blood flow and skin temperature.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3