Bisphenol-A alters microbiota metabolites derived from aromatic amino acids and worsens disease activity during colitis

Author:

DeLuca Jennifer AA1,Allred Kimberly F1,Menon Rani2,Riordan Rebekah2,Weeks Brad R3,Jayaraman Arul2,Allred Clinton D1

Affiliation:

1. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA

2. Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA

3. Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA

Abstract

Inflammatory bowel disease is a complex collection of disorders. Microbial dysbiosis as well as exposure to toxins including xenoestrogens are thought to be risk factors for inflammatory bowel disease development and relapse. Bisphenol-A has been shown to exert estrogenic activity in the colon and alter intestinal function, but the role that xenoestrogens, such as bisphenol-A , play in colonic inflammation has been previously described but with conflicting results. We investigated the ability of bisphenol-A to exacerbate colonic inflammation and alter microbiota metabolites derived from aromatic amino acids in an acute dextran sulfate sodium-induced colitis model. Female C57BL/6 mice were ovariectomized and exposed to bisphenol-A daily for 15 days. Disease activity measures include body weight, fecal consistency, and rectal bleeding. Colons were scored for inflammation, injury, and nodularity. Alterations in the levels of microbiota metabolites derived from aromatic amino acids known to reflect phenotypic changes in the gut microbiome were analyzed. Bisphenol-A exposure increased mortality and worsened disease activity as well as inflammation and nodularity scores in the middle colon region following dextran sulfate sodium exposure. Unique patterns of metabolites were associated with bisphenol-A consumption. Regardless of dextran sulfate sodium treatment, bisphenol-A reduced levels of tryptophan and several metabolites associated with decreased inflammation in the colon. This is the first study to show that bisphenol-A treatment alone can reduce microbiota metabolites derived from aromatic amino acids in the colon which may be associated with increased colonic inflammation and inflammatory bowel disease. Impact statement As rates of inflammatory bowel disease rise, discovery of the mechanisms related to the development of these conditions is important. Environmental exposure is hypothesized to play a role in etiology of the disease, as are alterations in the gut microbiome and the metabolites they produce. This study is the first to show that bisphenol-A alone alters tryptophan and microbiota metabolites derived from aromatic amino acids in a manner consistent with autoimmune diseases, specifically inflammatory bowel diseases, regardless of dextran sulfate sodium treatment. These findings indicate a potential mechanism by which bisphenol-A negatively affects gut physiology to exacerbate inflammation.

Funder

National Institute of Environmental Health Sciences

National Cancer Institute

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3