Inferences of carboplatin response-related signature by integrating multiomics data in ovarian serous cystadenocarcinoma

Author:

Yan Jia-qing1,Liu Min1,Ma Ying-lin1,Le Kai-di1,Dong Bin1,Li Guo-hui1ORCID

Affiliation:

1. Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China

Abstract

Platinum-based chemotherapy, especially carboplatin, is the primary measure to treat patients with ovarian cancer (OC). However, OC patients still have an adverse prognosis due to emergency of chemotherapy resistance. Ovarian serous cystadenocarcinoma (OSC) is the most common histological subtype of OC. Therefore, identifying the key factors that affect chemotherapy resistance and searching novel treatments had become a top priority. In this study, we analyzed carboplatin response-related mRNA, miRNA, DNA methylation, and alternative splicing (AS) and established a drug-resistant signature for carboplatin in OSC. This drug-resistant signature was obviously higher in resistant group than in non-resistant group and had accuracy predictive performance, which demonstrated that this signature could be considered as a superior indicator for OSC patients with carboplatin resistance. Furthermore, we selected three potential small molecule drugs including liranaftate, siguazodan, and tramiprostate to inhibit carboplatin resistance of OSC. In addition, we also identified ZINC00000205417, ZINC00000140928, and ZINC00021908260 were potential small molecule compounds for SLC17A7 based on Molecular Operating Environment (MOE) virtual screening. Finally, we confirmed the drug-like properties of these small molecule drugs via evaluating absorption, distribution, metabolism, elimination, and toxicity (ADMET) property. In summary, the signature could be used as biomarker for carboplatin resistance and small molecule drugs targeting these genes could improve clinical treatment for OSC in the future.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3