Mapping the microbial interactome: Statistical and experimental approaches for microbiome network inference

Author:

Dohlman Anders B1,Shen Xiling1

Affiliation:

1. Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA

Abstract

Advances in high-throughput sequencing have ushered in a new era of research into the gut microbiome and its role in human health and disease. However, due to the unique characteristics of microbiome survey data, their use for the detection of ecological interaction networks remains a considerable challenge, and a field of active methodological development. In this review, we discuss the landscape of existing statistical and experimental methods for detecting and characterizing microbial interactions, as well as the role that host and environmental metabolic signals play in mediating the behavior of these networks. Numerous statistical tools for microbiome network inference have been developed. Yet due to tool-specific biases, the networks identified by these methods are often discordant, motivating a need for the development of more general tools, the use of ensemble approaches, and the incorporation of prior knowledge into prediction. By elucidating the complex dynamics of the microbial interactome, we will enhance our understanding of the microbiome’s role in disease, more precisely predict the microbiome’s response to perturbation, and inform the development of future therapeutic strategies for microbiome-related disease. Impact statement This review provides a comprehensive description of experimental and statistical tools used for network analyses of the human gut microbiome. Understanding the system dynamics of microbial interactions may lead to the improvement of therapeutic approaches for managing microbiome-associated diseases. Microbiome network inference tools have been developed and applied to both cross-sectional and longitudinal experimental designs, as well as to multi-omic datasets, with the goal of untangling the complex web of microbe-host, microbe-environmental, and metabolism-mediated microbial interactions. The characterization of these interaction networks may lead to a better understanding of the systems dynamics of the human gut microbiome, augmenting our knowledge of the microbiome’s role in human health, and guiding the optimization of effective, precise, and rational therapeutic strategies for managing microbiome-associated disease.

Funder

National Institutes of Health

National Science Foundation

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploration of the Changes in Facial Microbiota of Maskne Patients and Healthy Controls Before and After Wearing Masks Using 16 S rRNA Analysis;Journal of Epidemiology and Global Health;2024-05-21

2. Targeting respiratory microbiomes in COPD and bronchiectasis;Expert Review of Respiratory Medicine;2024-04-02

3. Gut microbiome-metabolome interactions predict host condition;Microbiome;2024-02-10

4. Two Gaussian Regularization Methods for Time-Varying Networks;Journal of Agricultural, Biological and Environmental Statistics;2024-01-02

5. Microbial biogeography of the eastern Yucatán carbonate aquifer;Applied and Environmental Microbiology;2023-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3