Epoxyeicosatrienoic Acid Inhibition Alters Renal Hemodynamics During Pregnancy

Author:

Huang Hui12,Chang Hsin-Hsin1,Xu Yue1,Reddy D. Sudarshan3,Du Juan1,Zhou Yiqiang1,Dong Zheng4,Falck John R.3,Wang Mong-Heng1

Affiliation:

1. Department of Physiology, Medical College of Georgia, Augusta, Georgia 30912

2. Renal Department of the Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, P. R. China

3. Department of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390

4. Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia 30912

Abstract

In this study we examined the expression of cytochrome P450 (CYP) 2C and CYP2J Isoforms in renal proximal tubules and microvessels isolated from rats at different stages of pregnancy. We also selectively inhibited epoxyeicosatrienoic acid (EET) production by the administration of N-methanesulfonyl-6-(2-proparyloxyphenyl)hexanamide (MSPPOH 20 mg/kg/day iv) to rats during Days 14–17 of gestation and to age-matched virgin rats and determined the consequent effects on renal function. Western blot analysis showed that CYP2C11, CYP2C23, and CYP2J2 expression was significantly increased in the renal microvessels of pregnant rats on Day 12 of gestation. In the proximal tubules, CYP2C23 expression was significantly increased throughout pregnancy, while the expression of CYP2C11 was increased in early and late pregnancy and the expression of CYP2J2 was increased in middle and late pregnancy. MSPPOH treatment significantly Increased pregnant rats’ mean arterial pressure, renal vascular resistance, and sodium balance but significantly decreased renal blood flow, glomerular filtration rate, and urinary sodium excretion, as well as fetal pups’ body weight and length. In contrast, MSPPOH treatment had no effect on renal hemodynamics or urinary sodium excretion in age-matched virgin rats. In pregnant rats, MSPPOH treatment also caused selective inhibition of renal cortical EET production and significantly decreased the expression of CYP2C11, CYP2C23, and CYP2J2 in the renal cortex, renal microvessels, and proximal tubules. These results suggest that upregulation of renal vascular and tubular EETs contributes to the control of blood pressure and renal function during pregnancy.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3