Deep learning prediction of attention-deficit hyperactivity disorder in African Americans by copy number variation

Author:

Liu Yichuan1ORCID,Qu Hui-Qi1ORCID,Chang Xiao1,Nguyen Kenny1,Qu Jingchun1ORCID,Tian Lifeng1,Glessner Joseph1,Sleiman Patrick MA123,Hakonarson Hakon1234

Affiliation:

1. Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA

2. Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

3. Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA

4. Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA

Abstract

Current understanding of the underlying molecular network and mechanism for attention-deficit hyperactivity disorder (ADHD) is lacking and incomplete. Previous studies suggest that genomic structural variations play an important role in the pathogenesis of ADHD. For effective modeling, deep learning approaches have become a method of choice, with ability to predict the impact of genetic variations involving complicated mechanisms. In this study, we examined copy number variation in whole genome sequencing from 116 African Americans ADHD children and 408 African American controls. We divided the human genome into 150 regions, and the variation intensity in each region was applied as feature vectors for deep learning modeling to classify ADHD patients. The accuracy of deep learning for predicting ADHD diagnosis is consistently around 78% in a two-fold shuffle test, compared with ∼50% by traditional k-mean clustering methods. Additional whole genome sequencing data from 351 European Americans children, including 89 ADHD cases and 262 controls, were applied as independent validation using feature vectors obtained from the African American ethnicity analysis. The accuracy of ADHD labeling was lower in this setting (∼70–75%) but still above the results from traditional methods. The regions with highest weight overlapped with the previously reported ADHD-associated copy number variation regions, including genes such as GRM1 and GRM8, key drivers of metabotropic glutamate receptor signaling. A notable discovery is that structural variations in non-coding genomic (intronic/intergenic) regions show prediction weights that can be as high as prediction weight from variations in coding regions, results that were unexpected.

Funder

The Children’s Hospital of Philadelphia Endowed Chair in Genomic Research

Institutional Development Funds from the Children’s Hospital of Philadelphia

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3