Ontogeny of inter-alpha inhibitor proteins in ovine brain and somatic tissues

Author:

Spasova Mariya S1,Sadowska Grazyna B1,Threlkeld Steven W1,Lim Yow-Pin2,Stonestreet Barbara S1

Affiliation:

1. Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA

2. ProThera Biologics, Inc., East Providence, RI 02914, USA

Abstract

Inter-alpha inhibitor proteins (IAIPs) found in relatively high concentrations in human plasma are important in inflammation. IAIPs attenuate brain damage in young and adult subjects, decrease during sepsis and necrotizing enterocolitis in premature infants, and attenuate sepsis-related inflammation in newborn rats. Although a few studies have reported adult organ-specific IAIP expression, information is not available on age-dependent IAIP expression. Given evidence suggesting IAIPs attenuate brain damage in young and adult subjects, and inflammation in newborns, we examined IAIP expression in plasma, cerebral cortex (CC), choroid plexus (CP), cerebral spinal fluid (CSF), and somatic organs in fetal, newborn, and adult sheep to determine the endogenous expression patterns of these proteins during development. IAIPs (enzyme-linked immunosorbent assay) were higher in newborn and adult than fetal plasma ( P < 0.05). Western immunoblot detected 125 kDa PaI (Pre-alpha Inhibitor) and 250 kDa IaI (Inter-alpha Inhibitor) in plasma, CNS, and somatic organs. PaI expression in CC and CP was higher in fetuses than newborns and adults, but IaI expression was higher in adults than fetuses and newborns. Both PaI and IaI were higher in fetal than newborn CSF. IAIPs exhibited organ-specific ontogenic patterns in placenta, liver, heart, and kidney. These results provide evidence for the first time that plasma, brain, placenta, liver, heart, and kidney express IAIPs throughout ovine development and that expression patterns are unique to each organ. Although exact functions of IAIPs in CNS and somatic tissues are not known, their presence in relatively high amounts during development suggests their potential importance in brain and organ development.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3