Alteration of endothelial permeability ensures cardiomyocyte survival from ischemic insult in the subendocardium of the heart

Author:

Chu Qing1,Song Xin1,Xiao Ying1,Kang Y James12ORCID

Affiliation:

1. Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China

2. Tennessee Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA

Abstract

Previous studies have shown that cardiomyocytes in the subendocardial region of myocardium survive from ischemic insult. This study was undertaken to explore possible mechanisms for the survival of these cardiomyocytes, focusing on changes in endothelial cells (ECs) and blood supply. C57/B6 mice were subjected to permanent ligation of left anterior descending (LAD) coronary artery to induce myocardial ischemia (MI). The hearts were harvested at 1, 4, and 7 days post MI and examined for histological changes. It was found that the survival of cardiomyocytes was associated with a preservation of ECs in the subendocardial region, as revealed by EC-specific tdTomato expression transgenic mice ( Tie2tdTomato). However, the EC selective proteins, PECAM1 and VEGFR2, were significantly depressed in these ECs. Consequently, the ratio of PECAM1/tdTomato was significantly decreased, indicating a transformation from PECAM1+ ECs to PECAM1 ECs. Furthermore, EC junction protein, VE-cadherin, was not only depressed but also disassociated from PECAM1 in the same region. These changes led to an increase in EC permeability, as evidenced by increased blood infiltration in the subendocardial region. Thus, the increase in the permeability of ECs due to their transformation in the subendocardial region allows blood infiltration, creating a unique microenvironment and ensuring the survival of cardiomyocytes under ischemic conditions.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3