A BRIEF COMMUNICATION

Author:

Murdoch William J.1,Van Kirk Edward A.1,Alexander Brenda M.1

Affiliation:

1. Department of Animal Science and Reproductive Biology Program, University of Wyoming, Laramie, Wyoming 82071

Abstract

A cause-effect relationship between ovulation and common (surface) epithelial ovarian cancer has been suspected for many years. The ovarian surface epithelium apparently becomes exposed to genotoxins that are generated during the ovulatory process. Intensive egg-laying hens readily develop ovarian carcinomatosis. Indeed, elevated levels of potentially mutagenic 8-oxo-guanine adducts were detected in avian ovarian epithelial cells isolated from the apical surfaces and perimeters of pre-and postovulatory follicles, respectively. Internucleosomal DNA fragmentation indicative of apoptosis was evident in ovarian surface epithelial cells associated with the formative site of ovulation (stigma line) and regressive ruptured follicles. It is conceivable that a genetically altered progenitor cell with unrepaired DNA but not committed to death (i.e., a unifocal “escape”) could give rise to a transformed phenotype. Hence, the high rate of ovarian cancer in egg-laying hens could be the consequence of genomic damages to the ovarian surface epithelium associated with incessant ovulations, thereby increasing the likelihood of mutation and clonal expansion.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Reference44 articles.

1. Papadaki L, Beilby JOW. The fine structure of the surface epithelium of the human ovary. J Cell Sci 8:445–465, 1971.

2. Ovulation and the role of the ovarian surface epithelium

3. Cytological observations of the ovarian epithelium in mammals during the reproductive cycle

4. Etches RJ, Petitte JN. Reptilian and avian follicular hierarchies: models for the study of ovarian development. J Exp Zool Suppl 4:112–122, 1990.

5. Ovarian surface epithelium during ovulatory and anovulatory ovine estrous cycles

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3