Potential biomarkers in septic shock besides lactate

Author:

Yang Hang1,Du Linlin2,Zhang Zhaocai2ORCID

Affiliation:

1. Department of Emergency Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China

2. Department of Critical Care Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China

Abstract

Septic shock can be defined as sepsis with persisting hypotension and is required for vasopressors after initial unsuccessful fluid resuscitation. Elevated lactate is a biomarker of tissue perfusion and oxygenation and a useful prognostic tool for resuscitation in septic shock, as it is a byproduct of anaerobic glycolysis due to inadequate oxygen delivery and tissue hypoxia. Early and serial systematic lactate measurement will prompt physician more rapid intervention and lactate normalization, which is associated with better outcome. However, lactate formation during septic shock is neither entirely related to tissue hypoxia, nor reversible by increasing oxygen delivery. Meanwhile, lactate can be oxidized via tricarboxylic acid cycle after being transferred into mitochondria via lactate shuttle, which indicates elevated lactate can be used rather than only accumulation. Glycolysis and elevated lactate can be initiated by hypoxia, but persistent hyperlactatemia may not only represent persistent hypoxia. Some other potential biomarkers have been reviewed in the article including intermediates of tricarboxylic acid cycle, malate-aspartate shuttle, the nicotinamide adenine dinucleotide/reduced nicotinamide adenine dinucleotide (NAD+/NADH) ratio, NAD+, NADH, malate, and malate dehydrogenase from the point of view of energy metabolism. Among them, malate dehydrogenase participates in both malate-aspartate shuttle and tricarboxylic acid cycle, and it can also indirectly reflex the NAD+/NADH ratio. It is reasonable to hypothesize that the combination of lactate and malate dehydrogenase will be more comprehensive to reflex hypoxia in septic shock.Impact statementElevated lactate has been commonly considered as a biomarker and a useful prognostic tool for resuscitation in septic shock, facilitating physician more rapid intervention and treatment. However, it can be initiated by hypoxia, but persistent hyperlactatemia may not represent persistent hypoxia only. In the article, it is the first time to review potential biomarkers in septic shock from the point of view of energy metabolism including intermediates of TCA cycle, MAS, the NAD+/NADH ratio, NAD+, NADH, malate, and MDH. And the combination of lactate and MDH is also proposed in septic shock for the first time, as MDH in cytoplasm and mitochondria participates in both MAS and TCA cycle for ATP generation. Its feasibility in clinic has been analyzed at the end, although related research is still limited. It is reasonable the combination of lactate and MDH will be more comprehensive to reflex hypoxia in septic shock.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3