Topical naltrexone accelerates full-thickness wound closure in type 1 diabetic rats by stimulating angiogenesis

Author:

McLaughlin Patricia J1,Immonen Jessica A1,Zagon Ian S1

Affiliation:

1. Department of Neural & Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA

Abstract

Delays in wound healing often result in infection, chronic ulceration, and possible amputation of extremities. Impaired wound healing is a major complication of the 23 million people in the USA with diabetes, and financial and medical burdens are demanding new treatments for wound healing. Previous studies have demonstrated that topical application of the opioid antagonist naltrexone (NTX) dissolved in moisturizing cream reverses delays in wound closure in rats with streptozotocin-induced type 1 diabetes. A target of NTX’s action is DNA synthesis and cell proliferation. In this study, granulation tissue was evaluated to ascertain the specific cellular targets that were impaired in diabetic wounds, as well as those that were enhanced following NTX application. Mast cell number as well as the number of new blood vessels immunoreactive to fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor (VEGF), and alpha smooth muscle actin (α-SMA) antibodies were recorded at 3, 5, 8, 10, 15, and 20 days following creation of full-thickness dorsal cutaneous wounds in normal and type 1 diabetic rats. Diabetic rats displayed delays in wound closure as well as a reduction in the number of mast cells responding to the injury, and delays in the spatial and temporal expression of FGF-2, VEGF, and α-SMA in capillaries. Topical NTX accelerated the rate of wound closure and stimulated expression of angiogenic factors within granulation tissue of diabetic rats relative to control animals receiving saline in moisturizing cream. These data support observations that a novel biological pathway is impaired under diabetic conditions and can be modulated by topical NTX to enhance proliferative events in wound healing.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3