Affiliation:
1. Institute of Molecular Medicine, University of Texas, Houston, Texas 77030
Abstract
The highly conserved cardiotonic steroid (CS) binding site present on the ubiquitous membrane sodium pump, sodium, potassium-ATPase, appears to have been conserved by no force other than its capacity to bind CS: a family that includes plant-derived cardiac glycosides and putative endogenous vertebrate counterparts. Binding of ligand is inhibited by increased extracellular potassium. This implies functional coordination because inhibition of the sodium pump would be counterproductive when extracellular potassium is elevated. The interesting biology of the CS binding site continues to stimulate investigations into the identity of endogenous ligands, their role as pump regulators at the cellular level, and as mediators of body fluid balance and blood pressure regulation. In addition to inhibition of sodium and potassium transport, there is considerable recent evidence suggesting that the sodium pump may act as a cell signaling receptor activated by CS binding and responding by coordination of intracellular signaling pathways that can be dependent on and also independent of the reduction in transmembrane ion flux resulting directly from pump inhibition. This signaling may influence cell survival, growth, and differentiation. Recent insight into the biology of pump regulation by CS is reviewed.
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献