Calcimimetic R568 improved cardiac remodeling by classic and novel renin-angiotensin system in spontaneously hypertensive rats

Author:

Zhang Tian1ORCID,Tang Na1,Xi Dongmei1,Zhao Yongli1,Liu Yongmin1,Wang Lamei2,Tang Yan3,Zhang Xiaoni4,Zhong Hua1,He Fang1

Affiliation:

1. Department of Pathophysiology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi 832002, People’s Republic of China

2. Centre of Medical Functional Experiments, Medical College of Shihezi University, Shihezi 832002, People’s Republic of China

3. Department of Geriatrics, the First Affiliated Hospital of Medical College of Shihezi University, Shihezi 832002, People’s Republic of China

4. Department of Pathophysiology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, People's Republic of China and Department of Emergency and critical care medicine, the First Affiliated Hospital of Medical College of Shihezi University

Abstract

One major cause of cardiac mortality is heart disease caused by hypertension. The formation of cyclic adenosine monophosphate (cAMP) is inhibited by calcium-sensitive receptor (CaSR) activation which increases intracellular Ca2+ concentrations and suppresses renin release. As we know, renin-angiotensin system (RAS) is closely related to development of essential hypertension (EH). Therefore, we focused on exploring the roles of NPSR568 (R568)-activated CaSR in cardiac remodeling of spontaneously hypertensive rats (SHRs), as well as the activity of classic and novel RAS. Wistar-Kyoto rats (WKYs) and SHRs were treated by R568 for four and eight weeks, respectively, and their blood pressure (BP), echocardiographic values, heart-to-body weight ratio (HW/BW%), and left ventricle-to-body weight ratio (LVW/BW%) were evaluated. Then Masson’s trichrome staining and hematoxylin and eosin staining as well as RT-qPCR analysis of β-isoform of myosin heavy chain and brain natriuretic peptide mRNA expression were performed. A Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay and analysis of apoptosis marker proteins were used to assess the extent of myocardial apoptosis. The CaSR expression and the activity of classic and novel RAS were examined by immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay. The present study revealed that the development of hypertension was accompanied by increased BP, apoptosis, hypertrophy, and fibrosis, along with decreased expression of CaSR, decreased novel RAS, and increased classic RAS in myocardial tissues. R568 administration for four and eight weeks reduced BP and myocardial remodeling and reversed the low expression of CaSR; moreover, classic RAS was suppressed and novel RAS was activated in the myocardium. Taken together, these data indicate that R568 may effectively inhibit EH myocardial remodeling by inhibiting classic RAS and activating novel RAS in SHRs. Impact statement Our study reveals that low calcium-sensitive receptor (CaSR) expression is associated with the occurrence and development of essential hypertension-mediated myocardial remodeling. The activation of CaSR can reverse adverse myocardia remodeling by inhibiting local classical renin-angiotensin system (RAS) and activating novel RAS in cardiac tissues. CaSR is closely related to many cardiovascular diseases, but its specific mechanism remains not to be elucidated. To date, CaSR has not been investigated with regard to cardiovascular treatment; however, given the important relationship between CaSR and cardiovascular disease, CaSR regulators can be potential drugs for the treatment of cardiovascular disease.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3