Influence of Osmolytes on In Vivo Glucose Monitoring Using Optical Coherence Tomography

Author:

Sapozhnikova Veronika V.1,Prough Donald2,Kuranov Roman V.1,Cicenaite Inga1,Esenaliev Rinat O.123

Affiliation:

1. Laboratory for Optical Sensing and Monitoring, Center for Biomedical Engineering

2. Department of Anesthesiology

3. Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-0456

Abstract

Diabetes mellitus and its complications are the third leading cause of death in the world, exceeded only by cardiovascular disease and cancer. Tighter monitoring and control of blood glucose could minimize complications associated with diabetes. Recently, optical coherence tomography (OCT) for noninvasive glucose monitoring was proposed and tested in vivo. The aim of this work was to investigate the influence of changes in blood glucose concentration ([glu]) and sodium concentration ([Na+]) on the OCT signal. We also investigated the influence of other important analytes on the sensitivity of glucose monitoring with OCT. The experiments were carried out in anesthetized female pigs. The OCT images were acquired continuously from skin, while [glu] and [Na+] were experimentally varied within their physiological ranges. Correlations of the OCT signal slope with [glu] and [Na+] were studied at different tissue depths. The tissue area probed with OCT was marked and cut for histological examination. The correlation of blood [glu] and [Na+] with the OCT signal slope was observed in separate tissue layers. On average, equimolar changes in [glu] produced 2.26 ± 1.15 greater alterations of the OCT signal slope than changes in [Na+]. Variation of concentrations of other analytes did not Influence the OCT signal slope. The influence of [Na+] on relative changes in the OCT signal slope was generally less than [glu]-induced changes. OCT is a promising method for noninvasive glucose monitoring because of its ability to track the influence of changing [glu] on individual tissue layers.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3