URNet: System for recommending referrals for community screening of diabetic retinopathy based on deep learning

Author:

Yang Kun12,Lu Yufei1,Xue Linyan12,Yang Yueting1,Chang Shilong1,Zhou Chuanqing3ORCID

Affiliation:

1. College of Quality and Technical Supervision, Hebei University, Baoding 071002, China

2. Hebei Technology Innovation Center for Lightweight of New Energy Vehicle Power System, Baoding 071002, China

3. College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China

Abstract

Diabetic retinopathy (DR) will cause blindness if the detection and treatment are not carried out in the early stages. To create an effective treatment strategy, the severity of the disease must first be divided into referral-warranted diabetic retinopathy (RWDR) and non-referral diabetic retinopathy (NRDR). However, there are usually no sufficient fundus examinations due to lack of professional service in the communities, particularly in the developing countries. In this study, we introduce UGAN_Resnet_CBAM (URNet; UGAN is a generative adversarial network that uses Unet for feature extraction), a two-stage end-to-end deep learning technique for the automatic detection of diabetic retinopathy. The characteristics of DDR fundus data set were used to design an adaptive image preprocessing module in the first stage. Gradient-weighted Class Activation Mapping (Grad-CAM) and t-distribution and stochastic neighbor embedding (t-SNE) were used as the evaluation indices to analyze the preprocessing results. In the second stage, we enhanced the performance of the Resnet50 network by integrating the convolutional block attention module (CBAM). The outcomes demonstrate that our proposed solution outperformed other current structures, achieving 94.5% and 94.4% precisions, and 96.2% and 91.9% recall for NRDR and RWDR, respectively.

Funder

the Natural Science Foundation of Hebei Province

Guangdong Basic and Applied Basic Research Foundation

the Special Project for Cultivating College Students' Scientific and Technological Innovation Ability in Hebei Province

the Fundamental Research Funds for the Central Universities of China

the President of Hebei University

the National Natural Science Foundation of China

Shenzhen Science and Technology Program

the Hebei University multidisciplinary

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3