JANEX-1 improves acute pulmonary embolism through VEGF and FAK in pulmonary artery smooth muscle cells

Author:

Pan Longfei12,Peng Zhuo2,Zhang Ruipeng3,Zhang Rui2,Liang Dean4,Chen Heming15ORCID,Tian Hongyan1

Affiliation:

1. Department of Peripheral Vascular Medicine, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China

2. Department of Emergency Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710004, China

3. Department of Vascular Surgery, Shaanxi Provincial People's Hospital, Xi'an710068, China

4. Department of Vascular Surgery, Luoyang Central Hospital, Luoyang 471000, China

5. Department of Endocrinology, Ankang Central Hospital, Ankang 725000, China

Abstract

Although clinical treatment has significant progress, acute pulmonary embolism is still a common disease with high morbidity and mortality. Janus Kinase 3, a member of JAK family, has been demonstrated to promote smooth muscle cell proliferation through STAT3. In this work, we explored the effect of JANEX-1 (a specific Janus Kinase 3 inhibitor) on platelet-derived growth factor (PDGF)-induced proliferation-related molecules in pulmonary artery smooth muscle cells (PVSMCs) in vitro and assessed the therapeutic potential of Janus Kinase 3 for vascular remodeling in acute pulmonary embolism mice. The results revealed that Janus Kinase 3 was overexpressed and active in PDGF-induced PVSMCs and acute pulmonary embolism mice, compared to a low expression in normal conditions. JANEX-1, blocking Janus Kinase 3 expression or activity, reduced Janus Kinase 3/STAT3 signaling pathway, VEGF expression, FAK activation, and PDGF-induced proliferation of PVSMCs, while overexpression of VEGF or FAK induced PVSMCs proliferation and resisted the negative effects of JANEX-1. Moreover, JANEX-1 improved right ventricular systolic pressure, survival and lung damage in acute pulmonary embolism-mice, and inhibited the thrombus-induced intimal hyperplasia and the expression of α-SMA, VEGF, and FAK activation under neointimal smooth muscle cells of acute pulmonary embolism mice. In conclusion, the data suggest that JANEX-1 exerts protective effects by inhibiting PVSMCs proliferation and vascular remodeling post-acute pulmonary embolism, in part through Janus Kinase 3/STAT3 signaling pathway-mediated VEGF expression and FAK activation. The data are helpful to elucidate the pharmacological mechanism and potential therapeutic effect of JANEX-1 in APE.Impact statementAccumulating evidence suggests that vascular remodeling due to immoderate proliferation and migration of SMCs is a common process occurring in APE. In this work, we tried to find a breakthrough in the pathological mechanism to alleviate the prognosis of APE by improving SMCs proliferation and explored the effect of JANEX-1 on PDGF-induced proliferation-related molecules in PVSMCs and assessed the therapeutic potential of JAK3 for vascular remodeling in APE mice. We demonstrated that JANEX-1, blocking JAK3 expression or activity, reduced JAK3/STAT3 signaling pathway, VEGF expression and FAK activation, and PDGF-induced proliferation of PVSMCs. Moreover, JANEX-1 inhibited the thrombus-induced intimal hyperplasia and the expression of VEGF and FAK activation in neointimal SMCs of APE mice. The data are helpful to elucidate the pharmacological mechanism and potential therapeutic effect of JANEX-1 in APE.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3