Febuxostat ameliorates APAP-induced acute liver injury by activating Keap1/Nrf2 and inhibiting TLR4/NF-κB p65 pathways

Author:

Tian Jinhong1,Zhang Shuaishuai1ORCID,Li Lu1,Lin Xueman1,Li Yongmei1,Zhao Kunlu1,Zheng Fengxin1,Chen Yongjun1,Yang Yang1,Wu Ting1,Pang Jianxin1ORCID

Affiliation:

1. NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China

Abstract

Excessive acetaminophen (APAP) application is a major cause of drug-induced liver injury (DILI). Febuxostat (Feb), a drug for reducing uric acid (UA) levels, was demonstrated to relieve hepatic inflammation and reverse organ functions. However, the effect of Feb on APAP-induced DILI and its mechanisms have not been fully explored. In this study, Feb (10 mg/kg) was given to mice by gavage 1 h after APAP (300 mg/kg, i.g.) induction. Serum and liver samples were collected 12 or 3 h after APAP challenge. Feb treatment was found to remarkably improve APAP-induced DILI, as evidenced by reduced serum ALT, AST and UA levels, pathomorphology, inflammatory, and oxidative responses. Consistently, treatment with Feb also reduced the cell injury induced by APAP in LO2 cells. Mechanistically, Feb induced GPX4 expression, activated the Keap1/Nrf2 pathway, and inhibited the TLR4/NF-κB p65 pathway. Feb also inhibited glutathione (GSH) depletion and Jun N-terminal kinase (JNK) activation in the early injury phase. Notably, pretreatment with Feb for 3 days also revealed preventive effects against APAP-induced DILI in mice. Overall, our data revealed a potential health impact of Feb on APAP-mediated DILI in vivo and in vitro, suggesting that Feb might be a potential candidate for treating DILI.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3