Affiliation:
1. Maulana Azad National Institute of Technology, Bhopal, India
2. Purushottam Institutes of Engineering and Technology, Rourkela, India
Abstract
An Elman network is used for the prediction of material removal rate (MRR) in electrical discharge machining (EDM). An Elman network is a dynamic recurrent neural network that can be used to model non-linear dynamic systems. Training of the models is performed with data from series of EDM experiments on AISI D2 tool steel from finishing, semi-finish to roughing operations. The machining parameters such as discharge current, pulse duration, duty cycle, and voltage were used as model input variables during the development of predictive models. The developed model is validated with a new set of experimental data that was not used for the training step. The mean percentage error of the model is found to be less than 6 per cent, which shows that the proposed model can satisfactorily predict the MRR in EDM.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献