Recurrent neural network estimation of material removal rate in electrical discharge machining of AISI D2 tool steel

Author:

Pradhan M K1,Das R2

Affiliation:

1. Maulana Azad National Institute of Technology, Bhopal, India

2. Purushottam Institutes of Engineering and Technology, Rourkela, India

Abstract

An Elman network is used for the prediction of material removal rate (MRR) in electrical discharge machining (EDM). An Elman network is a dynamic recurrent neural network that can be used to model non-linear dynamic systems. Training of the models is performed with data from series of EDM experiments on AISI D2 tool steel from finishing, semi-finish to roughing operations. The machining parameters such as discharge current, pulse duration, duty cycle, and voltage were used as model input variables during the development of predictive models. The developed model is validated with a new set of experimental data that was not used for the training step. The mean percentage error of the model is found to be less than 6 per cent, which shows that the proposed model can satisfactorily predict the MRR in EDM.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3