Electroacupuncture suppresses spinal nerve ligation-induced neuropathic pain via regulation of synaptic plasticity through upregulation of basic fibroblast growth factor expression

Author:

Zhou Kecheng12,Wu Qiaoyun12,Yue Jingjing12,Yu Xiaolan12,Ying Xinwang12,Chen Xiaolong12,Zhou Ye12,Yang Guanhu12,Tu Wenzhan12,Jiang Songhe12

Affiliation:

1. Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children’s Hospital, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, P.R. China

2. Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, P.R. China

Abstract

Background: Improving synaptic plasticity is a good way to alleviate neuropathic pain. Electroacupuncture (EA) is currently used worldwide to treat this disease, but its specific mechanisms of action need further investigation. Evidence has suggested that basic fibroblast growth factor (bFGF) plays an important role in promoting nerve regeneration and can promote the expression of vascular endothelial growth factor (VEGF). Objective: In this study, we examined the effects of EA on synaptic plasticity and its underlying mechanism. Methods: A spinal nerve ligation (SNL) rat model was established. NSC37204 (a specific inhibitor of bFGF) was used to determine the relationship between bFGF and putative EA-mediated improvements in synaptic plasticity. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were assessed to evaluate hyperalgesia in rats with SNL. Tissue morphology was detected by hematoxylin–eosin (HE) and Nissl staining, while neural plasticity and its molecular mechanisms were examined by Western blotting, quantitative real-time polymerase chain reaction (qPCR), dual-label immunohistochemistry and transmission electron microscopy. Results: We found that EA improved synaptic plasticity, consistent with higher levels of expression of bFGF and VEGF. Contrary to the beneficial effects of EA, NSC37204 promoted synaptic reconstruction. Furthermore, EA-induced improvements in the neurobehavioral state and improved synaptic plasticity were blocked by NSC37204, consistent with lower expression levels of bFGF and VEGF. Conclusion: These findings indicate that EA suppresses SNL-induced neuropathic pain by improving synaptic plasticity via upregulation of bFGF expression.

Funder

the Basic Research Program of Wenzhou City

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Neurology (clinical),Complementary and alternative medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3