Abstract
With the development of computer technology, the simulation authenticity of virtual reality technology is getting higher and higher, and the accurate recognition of human–computer interaction gestures is also the key technology to enhance the authenticity of virtual reality. This article briefly introduced three different gesture feature extraction methods: scale invariant feature transform, local binary pattern and histogram of oriented gradients (HOG), and back-propagation (BP) neural network for classifying and recognizing different gestures. The gesture feature vectors obtained by three feature extraction methods were used as input data of BP neural network respectively and were simulated in MATLAB software. The results showed that the information of feature gesture diagram extracted by HOG was the closest to the original one; the BP neural network that applied HOG extracted feature vectors converged to stability faster and had the smallest error when it was stable; in the aspect of gesture recognition, the BP neural network that applied HOG extracted feature vector had higher accuracy and precision and lower false alarm rate.
Subject
General Engineering,Human Factors and Ergonomics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献