Analysis and comparison on the mechanical behaviors of original bolt-column (OBC) joint and improved bolt-column (IBC) joint

Author:

Xiao Zhicheng1,Peng Jingxuan1,Li Chengxin1,Yan Gengwang1,Li Huijun1ORCID

Affiliation:

1. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, China

Abstract

In this study, OBC joint is improved by incorporating one web, two flanges, and two additional bolts, putting forward a novel semi-rigid joint referred to as IBC joint. Finite element models of both OBC and IBC joints are established and the former is validated based on previous research. Subsequently, a total of 84 numerical models is utilized to investigate and compare the mechanical behaviors of OBC and IBC joints, taking into account different thicknesses of side plate and flange as wll as various loading conditions. The numerical results indicate that: (I) in comparison to OBC joints, the IBC joints exhibit significant enhancements in strong axis bending performance and axial tensile performance, including average enhancement ratios of 48%, 67%, 44%, and 19% in initial strong axis bending stiffness, ultimate strong axis bending moment, initial tensile stiffness and ultimate tension, respectively; (II) compared to OBC joints, the IBC joints demonstrate reduced capacity in axial torsional resistance and axial compressive performance, with mean decline ratios of 54%, 39%, 14%, and 7% in initial torsional stiffness, ultimate torque, initial compressive stiffness and ultimate compression, respectively; (III) OBC joints have better weak axis bending performance compared to IBC joints, but this gap decreases remarkably with increasing thicknesses of side plate and flange; (IV) the initial out-of-plane shear stiffness and ultimate out-of-plane shear of the IBC joint exhibit average enhancement of approximately 20% and 10%, respectively, when compared to those of the OBC joint; (V) regarding in-plane shear performance, the initial stiffness of IBC joints exceeds that of OBC joints by an average ratio of 61%, while IBC joints with flange thickness over 10 mm demonstrate significant improvement in ultimate capacity; (VI) The mechanical performance of OBC and IBC joints shows varying degrees of improvement with an increase in the thicknesses of side plate and flange.

Funder

national natural science foundation of china

natural science basic research program of shaanxi province

Training Programs of Innovation and Entrepreneurship for Undergraduates

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3