Buckling-Controlled Member for Improving the Ductile Behavior of Double-Layer Latticed Space Structures

Author:

Kheirollahi Mohammad1,Chenaghlou Mohammad Reza1ORCID,Abedi Karim1

Affiliation:

1. Faculty of Civil Engineering, Sahand University of Technology, Tabriz, Iran

Abstract

In this paper, a new buckling-controlled member (BCM) is introduced for use in space structures. This member is composed of four components; namely: the encasing, joints, core, and adjustable nuts. The core is intended to act as a structural element to resist the axial loads by its yielding under compression loading. The steel encasing is supposed to confine the steel core. Adjustable steel nuts on the steel core act as lateral bracings and are responsible for lateral load transmission between the encasing and core. The joints at the two ends of the supports of the member. Six experimental tests have been performed under compression load to show the efficiency of the new member. The test results reveal that the proposed member can provide the needed ductility and can delay the brittle buckling of the members. Also, the BCM is capable of considering buckling modes and controlling the plastic range. The experimental and numerical results have also been compared. Additional numerical evaluations have been carried out using finite element models, in which the effects of different parameters of the member have been investigated. The obtained results showed that the arrangement of inner elements is the main factor affecting ductility and postponing the buckling of the members. In the end, the effects of the BCMs on the overall behavior of four double-layer space structures have been studied. The obtained results of analyses indicated that the BCMs can enhance the strength and ductility of space structures, thereby reducing the risk of collapse. Also, the seismic collapse of the space structure was postponed.

Publisher

SAGE Publications

Subject

Building and Construction,Architecture,Civil and Structural Engineering,Conservation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3