Off-Earth infrastructure assembly: A conceptual method for scaffoldless and mortarless component-based structures in static equilibrium

Author:

Konstantatou Marina1,Navarro Perez Salvador C.1,Piker Daniel1,Dall’Igna Miriam1,Gallou Irene1

Affiliation:

1. Foster + Partners, Battersea, London, UK

Abstract

Extra-terrestrial infrastructure design and architecture are experiencing a resurgence due to the prospect of permanent human presence on celestial bodies such as our moon and Mars. There, the conditions and constraints within which structural design and assembly should be developed are extreme – for example, scarcity of processed structural material, labour, machinery and imports from Earth. Consequently, the guiding design principles for building off-Earth should include efficient In-Situ Resource Utilisation (ISRU) and reusability. Significantly, these aspects have striking similarities to some characteristics of our vernacular construction history on Earth, such as inherent material efficiency and use of local materials. The majority of contemporary proposals for off-Earth design concern 3D-printed monolithic structures which are not reusable nor reconfigurable. As a result, there is scope for developing component-based, recyclable infrastructure which is based on efficient ISRU. In this research paper, we propose a two-fold assembly and structural design methodology which synthesises three-dimensional geometries in static equilibrium and vernacular construction techniques for deriving scaffoldless, component-based structures. This framework is underpinned by the development of a bespoke mechanically interlocking system which enables mortarless construction. This minimises the need for importing material binders and maximises the reconfigurability and reusability of off-Earth infrastructure.

Publisher

SAGE Publications

Subject

Building and Construction,Architecture,Civil and Structural Engineering,Conservation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3