Affiliation:
1. Statistics Research Laboratory, Department of Anesthesia and Critical Care, Massachusetts General Hospital,Harvard Medical School/MIT Division of Health Sciences and Technology, Boston, MA 02114 USA
Abstract
Mathematical models have played an important role in the analysis of circadian systems. The models include simulation of differential equation systems to assess the dynamic properties of a circadian system and the use of statistical models, primarily harmonic regression methods, to assess the static properties of the system. The dynamical behaviors characterized by the simulation studies are the response of the circadian pacemaker to light, its rate of decay to its limit cycle, and its response to the rest-activity cycle. The static properties are phase, amplitude, and period of the intrinsic oscillator. Formal statistical methods are not routinely employed in simulation studies, and therefore the uncertainty in inferences based on the differential equation models and their sensitivity to model specification and parameter estimation error cannot be evaluated. The harmonic regression models allow formal statistical analysis of static but not dynamical features of the circadian pacemaker. The authors present a paradigm for analyzing circadian data based on the Box iterative scheme for statistical model building. The paradigm unifies the differential equation–based simulations (direct problem) and the model fitting approach using harmonic regression techniques (inverse problem) under a single schema. The framework is illustrated with the analysis of a core-temperature data series collected under a forced desynchrony protocol. The Box iterative paradigm provides a framework for systematically constructing and analyzing models of circadian data.
Subject
Physiology (medical),Physiology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献