The Foot and Ankle Kinematics of a Simulated Progressive Collapsing Foot Deformity During Stance Phase: A Cadaveric Study

Author:

Henry Jensen K.1ORCID,Hoffman Jeffrey2,Kim Jaeyoung1ORCID,Steineman Brett2ORCID,Sturnick Daniel2ORCID,Demetracopoulos Constantine1,Deland Jonathan1,Ellis Scott1ORCID

Affiliation:

1. Foot & Ankle Surgery, Hospital for Special Surgery, New York, NY, USA

2. Biomechanics, Hospital for Special Surgery, New York, NY, USA

Abstract

Background: Progressive collapsing foot deformity (PCFD) is a complex pathology associated with tendon insufficiency, ligamentous failure, joint malalignment, and aberrant plantar force distribution. Existing knowledge of PCFD consists of static measurements, which provide information about structure but little about foot and ankle kinematics during gait. A model of PCFD was simulated in cadavers (sPCFD) to quantify the difference in joint kinematics and plantar pressure between the intact and sPCFD conditions during simulated stance phase of gait. Methods: In 12 cadaveric foot and ankle specimens, the sPCFD condition was created via sectioning of the spring ligament and the medial talonavicular joint capsule followed by cyclic axial compression. Specimens were then analyzed in intact and sPCFD conditions via a robotic gait simulator, using actuators to control the extrinsic tendons and a rotating force plate underneath the specimen to mimic the stance phase of walking. Force plate position and muscle forces were optimized using a fuzzy logic iterative process to converge and simulate in vivo ground reaction forces. An 8-camera motion capture system recorded the positions of markers fixed to bones, which were then used to calculate joint kinematics, and a plantar pressure mat collected pressure distribution data. Joint kinematics and plantar pressures were compared between intact and sPCFD conditions. Results: The sPCFD condition increased subtalar eversion in early, mid-, and late stance ( P < .05), increased talonavicular abduction in mid- and late stance ( P < .05), and increased ankle plantarflexion ( P < .05), adduction ( P < .05), and inversion ( P < .05). The center of plantar pressure was significantly ( P < .01) medialized in this model of sPCFD and simulated stance phase of gait. Discussion: Subtalar and talonavicular joint kinematics and plantar pressure distribution significantly changed with the sPCFD and in the directions expected from a PCFD foot. We also found that ankle joint kinematics changed with medial and plantar drift of the talar head, indicating abnormal talar rotation. Although comparison to an in vivo PCFD foot was not performed, this sPCFD model produced changes in foot kinematics and indicates that concomitant abnormal changes may occur at the ankle joint with PCFD. Clinical Relevance: This study describes the dynamic kinematic and plantar pressure changes in a cadaveric model of simulated progressive collapsing foot deformity during simulated stance phase.

Funder

Orthopaedic Research and Education Foundation

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3