Polymethylmethacrylate (PMMA) Augmentation Enhances the Mechanical Characteristics of Midfoot Beam Constructs in Charcot Neuroarthropathy Cadaver Model

Author:

Pattisapu Naveen1,Huang Dave T.12,Porter Giselle1ORCID,Owhonda Rebisi1,Charlton Timothy1,Gross Christopher3ORCID,Thordarson David1,Metzger Melodie F.12ORCID

Affiliation:

1. Department of Orthopaedic Surgery, Cedars Sinai Medical Center, Los Angeles, CA, USA

2. Orthopaedic Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USA

3. Department of Orthopaedic Surgery, Medical University of South Carolina, Charleston SC, USA

Abstract

Background: Even with the best conservative care, patients with Charcot neuroarthropathy (CN) of the foot and ankle often ulcerate, increasing their risk of infection, amputation, and death. Surgical fixation has been associated with risk of recurrent ulceration, potentially due to poor bone quality prone to recurrent deformity and ulceration. We propose midfoot beam reconstruction with PMMA augmentation as a novel means of improving fixation. Methods: A protocol was developed to create characteristic CN midfoot fragmentation both visually and fluoroscopically in each of 12 matched-pair cadaveric feet. Afterward, the pairs were divided into 2 groups: (1) midfoot beam fusion surgery alone, and (2) midfoot beam fusion surgery augmented with PMMA. A solid 7.0-mm beam was placed into the medial column and a solid 5.5-mm beam was placed across the lateral column. In the PMMA group, 8 to 10 mL of PMMA was inserted into the medial column. The hindfoot of each specimen was potted and the metatarsal heads were cyclically loaded for 1800 cycles, followed by load to failure while load and displacement were continually recorded. Results: One specimen in the beam alone group failed before reaching the 1800th cycle and was not included in the failure analysis. The midfoot beam only group demonstrated greater mean displacement during cycle testing compared with the PMMA group, P < .05. The maximum force (N), stiffness (N/mm), and toughness (Nmm) were all significantly greater in the group augmented with PMMA, P < .05. Conclusion: In a CN cadaveric model, PMMA augmentation significantly decreased gapping during cyclic loading and nearly doubled the load to failure compared with midfoot beams alone. Clinical Relevance: The results of this biomechanical study demonstrate that augmentation of midfoot beams with PMMA increases the strength and stiffness of the fusion construct. This increased mechanical toughness may help reduce the risk of nonunion and infection in patients with neuropathic midfoot collapse.

Funder

American Orthopaedic Foot and Ankle Society

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3