Affiliation:
1. Illinois Bone & Joint Institute, Libertyville, IL, USA
2. Arthrex, Inc, Naples, FL, USA
Abstract
Background: Although double-row suture-anchored (DRSA) techniques for Achilles insertional tendinosis has proven successful, a reoccurring failure mode not yet addressed is suture tearing through the tendon. This study aims to address suture tearing by incorporating a rip-stop element. Authors hypothesized that the Rip-Stop group would demonstrate increased strength compared with more traditional techniques. Methods: 12 paired cadaveric feet were used in this study (n = 24). One sample from each pair was assigned to receive the standard double-row (SDR) Achilles repair with 4.75-mm knotless anchors (n = 12). The control’s matched sides were divided between 2 DRSA bridge groups: modified double-row (MDR) bridge with 3.9-mm anchors or rip-stop double-row (RS-DR) bridge repair with soft proximal anchors and 3.9-mm anchored distal row. In neutral position, specimens underwent 1000 cycles (20-100 N) followed by load to failure. Displacements, stiffness, ultimate load, and failure mode were recorded. Results: RS-DR had the lowest initial displacement values followed by SDR and MDR (1.3 ± 0.4, 2.7 ± 1.4, and 3.2 ± 1.3 mm, respectively). Significance was detected when comparing initial displacement of RS-DR to MDR ( P = .038). Cyclic displacement was lowest for RS-DR, followed by MDR and SDR (1.6 ± 0.9, 2.2 ± 1.1, and 4.5 ± 3.2 mm, respectively). Cyclic stiffness was similar for RS-DR and MDR (89.1 ± 24.6 and 81.9 ± 5.6 N/mm, respectively). RS-DR ultimate load (1116.8 ± 405.7 N) was statistically greater than SDR (465.6 ± 352.7, P = .003). Conclusion: RS-DR–repaired specimens demonstrated a decrease in displacement values and increased ultimate load and stiffness when compared to other groups. Results of this cadaveric model suggest that the addition of a rip-stop to DRSA Achilles repair is more impactful than anchor size. Limitations include that this was a time-zero biomechanical study, which cannot simulate the performance of the repairs during postoperative healing and recovery. Clinical Relevance: A rip-stop technique for Achilles repair effectively improves dynamic mechanical characteristics and may mitigate suture tearing through tendon in a patient cohort.