The Evolutionary Basis of Some Clinical Disorders of the Human Foot: A Comparative Survey of the Living Primates

Author:

Olson Todd R.1,Seidel Michael R.2

Affiliation:

1. Assistant Professor of Anatomy and Director, Anatomical Sciences Program, Sophie Davis School of Biomedical Education of the City College of New York.

2. Adjunct Professor of Anatomy, Sophie Davis School of Biomedical Education of the City College of New York. Currently in last year of medical training at the Albert Einstein College of Medicine, Bronx, New York 10461.

Abstract

The living primates are a highly diverse group of essentially arboreal animals whose feet are variously adapted for grasping, climbing, and leaping in trees. One of the most remarkable aspects of the anatomical variation in the feet of the extant primates is that this diversity can be arranged in a graduated sequence ranging from the primitive transtarsal-opposition type of grasping foot found in the lemurs, through the specialized transmeta-tarsal-adduction type that characterizes the higher primates, to'the unique nongrasping foot of humans. The comparative study of this graded series makes it possible, without recourse to the fossil record, to appreciate the adaptive and functional stages through which the human foot passed in its evolution. It is hypothesized that the initial stage of human erect posture was characterized by a foot which was adapted to both hallucial grasping and short distance bipedal walking. In many respects, the structure of the foot of this primitive human was probably similar to that of the living highland gorilla. When compared with the feet of our closest living relatives, the African apes, the human foot is characterized by two major evolutionary specializations: the longitudinal and transverse arches, and the parallel first and second metatarsals. These two morphological adaptations, together with several associated specializations, are the structural basis of the bipedal human foot. Reconstructing the evolutionary and adaptive history of these specializations creates a better understanding of some of the more common clinical podiatric disorders. The modern human foot is structurally so well adapted to prolonged bipedal walking and standing that even slight deviations from its evolutionarily established pattern will produce debilitating clinical manifestations. In most cases, successful treatment of such disorders involves restoration of the foot's basic adaptive configuration.

Publisher

SAGE Publications

Subject

General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3