Affiliation:
1. HPE and related brain malformations, Kennedy Krieger Institute, Baltimore, MD.
2. Department of Orthopedic Surgery, Indiana University School of Medicine.
Abstract
Essential or primary hypertension is a multifactorial disease that is expressed as a result of complex interactions between genes and environmental influences. Several mutations in many different proteins are associated with expression of hypertension, including abnormalities in the epithelial sodium channel (ENaC) found in absorptive organs (i.e., distal colon, distal tubule of the nephron). Some of these mutations result in structural and/or functional alterations in ENaC-mediated Na+ entry in epithelia responsible for fluid and electrolyte balance and are associated with expression of hypertension. Studies support the notion that there is a link between ENaC and hypertension of both the monogenic (single gene mutation) and primary or essential type (a multifactorial disease). Alterations of other aspects of the environment of absorptive cells (e.g., hyperinsulinemia, hyperaldosteronemia, high plasma cortisol, high plasma Na+) have also been shown to elicit hyperabsorption of Na+ via ENaC and therefore could contribute significantly to expression of hypertension in people with intermediate phenotypes. This article describes an initial study in which the effects of an environmental factor, extracellular levels of insulin, on ENaC were examined in a normal kidney cell model. Electrophysiologic techniques revealed that ENaC density rapidly increased in response to addition of insulin to the basolateral bath. This autoregulatory recruitment of Na+ total channel density masked a slight decrease in open channel probability. Insulin’s effect on ENaC function and implications on fluid and electrolyte balance and expression of primary hypertension is discussed.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献