Insulin Increases Sodium (Na+) Channel Density in A6 Epithelia: Implications for Expression of Hypertension

Author:

Baxendale-Cox Lynn M.1,Duncan Randall L.2

Affiliation:

1. HPE and related brain malformations, Kennedy Krieger Institute, Baltimore, MD.

2. Department of Orthopedic Surgery, Indiana University School of Medicine.

Abstract

Essential or primary hypertension is a multifactorial disease that is expressed as a result of complex interactions between genes and environmental influences. Several mutations in many different proteins are associated with expression of hypertension, including abnormalities in the epithelial sodium channel (ENaC) found in absorptive organs (i.e., distal colon, distal tubule of the nephron). Some of these mutations result in structural and/or functional alterations in ENaC-mediated Na+ entry in epithelia responsible for fluid and electrolyte balance and are associated with expression of hypertension. Studies support the notion that there is a link between ENaC and hypertension of both the monogenic (single gene mutation) and primary or essential type (a multifactorial disease). Alterations of other aspects of the environment of absorptive cells (e.g., hyperinsulinemia, hyperaldosteronemia, high plasma cortisol, high plasma Na+) have also been shown to elicit hyperabsorption of Na+ via ENaC and therefore could contribute significantly to expression of hypertension in people with intermediate phenotypes. This article describes an initial study in which the effects of an environmental factor, extracellular levels of insulin, on ENaC were examined in a normal kidney cell model. Electrophysiologic techniques revealed that ENaC density rapidly increased in response to addition of insulin to the basolateral bath. This autoregulatory recruitment of Na+ total channel density masked a slight decrease in open channel probability. Insulin’s effect on ENaC function and implications on fluid and electrolyte balance and expression of primary hypertension is discussed.

Publisher

SAGE Publications

Subject

Research and Theory

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3