Systemic Neutrophil Activation in a Mouse Model of Ischemic Stroke and Reperfusion

Author:

Morrison Helena1,McKee Dana2,Ritter Leslie3

Affiliation:

1. College of Nursing, University of Arizona, Tucson, AZ, USA,

2. Department of Physiology, University of Arizona, Tucson, AZ, USA

3. College of Nursing, University of Arizona, Tucson, AZ, USA, Department of Neurology, University of Arizona, Tucson, AZ, USA

Abstract

As a natural response to injury and disease, neutrophils activate, adhere to the microvasculature, migrate into brain tissue, and release toxic substances such as reactive oxygen species and proteases. This neutrophil response occurs when blood flow is returned to brain tissue (reperfusion) after ischemic stroke. Thus, the presence of activated systemic neutrophils increases the potential for tissue injury during reperfusion after ischemic stroke. Although experiments in rat models suggest that activated neutrophils play a pivotal role in cerebral ischemia reperfusion injury, little is known about systemic neutrophil activation during reperfusion following ischemic stroke in a mouse model. The purpose of this study was to characterize systemic leukocyte responses and neutrophil CD11b expression 15-min and 24-hr post-reperfusion in a mouse model of ischemic stroke. The intraluminal filament method of transient middle cerebral artery occlusion (tMCAO) with reperfusion or a sham procedure was performed in male C57Bl/6 mice. Automated leukocyte counts and manual white blood cell (WBC) differential counts were measured. Flow cytometry was used to assess systemic neutrophil surface CD11b expression. The data suggest that the damaging potential of systemic neutrophil activation begins as early as 15 min and remains evident at 24 hr after the initiation of reperfusion. In addition, because transgenic mouse models, bred on a C57Bl/6 background, are increasingly used to elucidate single mechanisms of reperfusion injury after ischemic stroke, findings from this study are foundational for future investigations examining the damaging potential of neutrophil responses post-reperfusion after ischemic stroke in genetically altered mouse models within this background strain.

Publisher

SAGE Publications

Subject

Research and Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3