Postpartum Fatigue and Inhibited Lactation

Author:

Zhang Feng1ORCID,Xue Qin1,Bai Ting1,Wu Fan1,Yan Shuhan1

Affiliation:

1. Medical College, Nantong University, Nantong City, Jiangsu Province, China

Abstract

Background: Postpartum fatigue is a common disorder worldwide and affects both physical and mental functioning. In breastfeeding women, Prolactin (PRL) is not only involved in immunoregulation, but also responsible for lactation. Prolactin levels in women with chronic fatigue are higher than normal, but a chronic fatigue state inhibits postpartum lactation in humans. Objectives: This paper explored the inhibition mechanism of lactation by postpartum fatigue in rats. Methods: Postpartum fatigue models were built by forcing mother rats to stand in water and divided into 3-hour, 9-hour and 15-hour per day fatigue groups according to the underwater time. Mother rats and their offspring were reunited in a dry cage for 90 minutes every 3 hours for feeding. The expression of PRL, PRL receptor (PRLR), Janus Kinase 2 (JAK 2), and Signal transducers and activators of transcription 5 (STAT5) mRNA were analyzed and the microstructure of mammary gland were observed under light and electron microscopy. Results: The expression of pituitary PRL mRNA and its downstream signaling pathway JAK2 and STAT5 mRNA were down-regulated in the severe postpartum fatigue rats. PRL mRNA responses were dose-related to duration of fatigue. The expression of PRLR mRNA increased. Postpartum fatigue led to functional degeneration of mammary gland. The breast lobules were shrunk and the number of alveoli were decreased. Few milk protein granules and fat droplets were observed in the cytoplasm under transmission electron microscope. Conclusion: Postpartum fatigue inhibits the lactation by down-regulating the expression of PRL and PRL-dependent signaling pathway in rats.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Programs of Jiangsu Province

Publisher

SAGE Publications

Subject

Research and Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3