Concept and simulation of a novel dual-layer linear ion trap mass analyzer for micro-electromechanical systems mass spectrometry

Author:

Cheng Yupeng12ORCID,Liu Youjiang2,Wu Zhangxu12,Shen Chen12,Li Shan2,Wang Han12,Chen Chilai2

Affiliation:

1. University of Science and Technology of China, Hefei, China

2. Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China

Abstract

This paper proposed a dual-layer linear ion trap mass analyzer (dLIT) based on micro-electromechanical systems (MEMS) technology and stacked-layer structure for the development of MEMS mass spectrometry. Its basic performance and potential capabilities were explored by ion trajectory simulations. The theoretical formulas were modified by implementing multipole expansion. The simulation results were confirmed to be highly consistent with theoretical calculations in multiple aspects, including stability diagram, secular frequencies, and mass linearity, with only a deviation of 1–2%. In the boundary ejection mode, close to 100% ejection was achieved in a single dimension by applying extra quadrupole DC voltage. Preliminary simulation results showed that dLIT can achieve a peak width of ∼2 mass units (full width at half maximum, FWHM) for m/z 60 ions even at pressures as high as 50 Pa. Furthermore, the application of AC frequency scanning mode in dLIT was also evaluated, and preliminary simulation results yield a peak width of 0.3–0.4 mass units (FWHM). The dLIT offered several advantages, including high-precision fabrication at the sub-millimeter scale, excellent high-pressure performance, and a clear physical model. It preliminarily proved to be an ideal mass analyzer for MEMS mass spectrometry.

Funder

National Key Research and Development Program of China

Chinese Academy of Sciences

Hefei Institutes of Physical Science, Chinese Academy of Sciences

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3