Dipole and quadrupole resonance excitation in linear quadrupoles

Author:

Konenkov NV1ORCID

Affiliation:

1. Ryazan State University, Ryazan, Russia

Abstract

In the development of commercial quadrupole mass spectrometers, there is an interest in improving the performance characteristics such as transmission, resolution, and mass range. In particular, parametric and dipolar resonance excitation of trapping ions are used for linear quadrupole mass filters. Theoretical methods and numerical simulation of ion trajectories were applied for study of ion-optical properties. The review is devoted to description of different excitation methods to improve QMF performance and consists of three parts. The first part presents the results of a linear ion trap simulation for various operating conditions and excitation methods. The second part considers the effects of dipole excitation (DE) on the performance of the quadrupole mass filter. The last part analyzes the formation of stability islands by different methods of quadrupole excitation. To date conditions of mass separation in quadrupole mass filters with sin wave supply were described for stability islands of the first and third stability regions formed by quadrupole and DE. By complicating the electronics such methods allow to overcome the destructive influence of electric field distortions and obtain a resolving power and ion transmission efficiency comparable with commercial devices. At quadrupole resonance excitation by a two-frequency signal, it is possible to reduce the length of electrodes three times without losses in resolution and transmission, which reduces the cost of rod set production with micrometer accuracy. Dipole resonance excitation allows controlling the shape of the mass peak by changing amplitude and phase of the auxiliary AC signal. The main factors affecting the resolving power of a linear ion trap are described theoretically. The numerical modeling results are confirmed by experiment.

Publisher

SAGE Publications

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3