Clustering of biphenyl oxamide ions by chiral recognition

Author:

Kobetić Renata1ORCID,Portada Tomislav2,Dabić Dario3

Affiliation:

1. Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia

2. Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia

3. Croatian Meteorological and Hydrological Service, Zagreb, Croatia

Abstract

Gels created by self-assembly of small organic molecules are dynamic soft materials that have unique properties and demanding characterization. Four chiral gelators, with two valinol- or leucinoloxamido arms attached to the 2,2′-positions of the proatropisomeric biphenyl group were chosen to show that the electrospray ionization mass spectrometry (ESI-MS) could be used to differentiate the gelation feature of the chiral compounds 1-4 and also to shed light on the gelation processes. By inspecting the gelation of several solvents, we showed that 1 ( R, R) proved to be the most efficient gelator, forming the largest observable assemblies in the gas phase. The strong intermolecular H-bonds hold single-charged assemblies consisting of up to five monomer units detectable by ESI MS. Enantiomer 1 ( R, R) is a good gelator due to favorable intramolecular interactions that remain preserved in the gas phase. Compound 3 ( meso) does not have gelator properties and detected signals of larger assemblies in the gas phase. So, the detected signals correlate with the conformations of the studied compounds. MS could be used to elucidate the preferential type of noncovalent interaction due to the chiral recognition. The study paves a novel way to investigate the influence of chirality on the molecular assembly and consequently macroscopic properties and functions of materials.

Funder

Croatian Science Foundation Grant

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3