Gas Chromatography – Ion Mobility Spectrometry as a tool for quick detection of hazardous volatile organic compounds in indoor and ambient air: A university campus case study

Author:

Moura Pedro Catalão1ORCID,Vassilenko Valentina12

Affiliation:

1. Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LibPhys-UNL), NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal

2. NMT, S. A., Caparica, Portugal

Abstract

Society’s concerns about the citizens’ exposure to possibly dangerous environments have recently risen; nevertheless, the assessment of indoor air quality still represents a major contemporary challenge. The volatile organic compounds (VOCs) are among the main factors responsible for deteriorating air quality conditions. These analytes are very common in daily-use environments and they can be extremely hazardous to human health, even at trace concentrations levels. For these reasons, their quick detection, identification, and quantification are crucial tasks, especially for indoor and heavily-populated scenarios, where the exposure time is usually quite long. In this work, a Gas Chromatography – Ion Mobility Spectrometry (GC-IMS) device was used for continuous monitoring indoor and ambient air environments at a large-scale, due to its outstanding levels of sensibility, selectivity, analytical flexibility, and almost real-time monitoring capability. A total of 496 spectra were collected from 15 locations of a university campus and posteriorly analysed. Overall, 23 compounds were identified among the 31 detected. Some of them, like Ethanol and 2-Propanol, were reported as being very hazardous to the human organism, especially in indoor environments. The achieved results confirmed the suitability of GC-IMS technology for air quality assessment and monitoring of VOCs and, more importantly, proved how dangerous indoor environments can be in scenarios of continuous exposure.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

SAGE Publications

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3