Method for determination of elemental impurities in metronidazole benzoate using inductively coupled plasma mass spectrometry

Author:

Tian Maoxian1,Zhang Hui2,Fan Huajun3,Yin Mingxing1,Wang Wenqing1,Shi Chunyang1ORCID

Affiliation:

1. Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

2. Hainan Center for Drug and Medical Device Evaluation and Service, Haikou, China

3. ICAS Testing Technology Service (Shanghai) Co., Ltd, Shanghai, China

Abstract

The elemental impurities in pharmaceutical products have aroused widespread concern among respective supervising authorities and official pharmacopoeias since they are harmful and have no therapeutic effects. Metronidazole benzoate is used extensively to treat a variety of infections. However, impurities will inevitably be introduced in the manufacturing process of metronidazole benzoate. Hence, in this study, a sensitive method was developed for trace determination of elemental impurities in metronidazole benzoate active pharmaceutical ingredients by using inductively coupled plasma mass spectrometry in kinetic energy discrimination mode. The method was validated for system suitability, specificity, linearity, sensitivity, accuracy, and precision according to USP chapter <233> Elemental Impurities-Procedure. The method had good linearity with correlation coefficients > 0.99. The limits of detection were in the range of 0.0003–0.1411 μg/g, which was lower than the acceptable limit and indicated the high sensitivity of the method. The method was accurate with the recoveries in the range of 92%–107%. Moreover, the content of seven elemental impurities in the three batches of metronidazole benzoate active pharmaceutical ingredients by this method was originally below their limits and less than 30% of permitted daily exposure, meeting the requirement of International Council for Harmonization Q3D guidelines. Thus, this newly developed and validated method for estimating elemental impurities in metronidazole benzoate active pharmaceutical ingredients was within the permitted limit and suitable for routine use.

Publisher

SAGE Publications

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3