Hammett correlation in competition experiments in dissociation of ionised substituted benzophenones and dibenzylideneacetones

Author:

Fenwick Nathan W1ORCID,Telford Richard1,Martin William H C1,Bowen Richard D1ORCID

Affiliation:

1. School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK

Abstract

A convenient method of applying competition experiments to devise a Hammett correlation in the dissociation by α-cleavage of 17 ionised 3- and 4-substituted benzophenones, YC6H4COC6H5[Y=F, Cl, Br, CH3, CH3O, NH2, CF3, OH, NO2, CN and N(CH3)2] is reported and discussed. The results given by this approach, which rely on the relative abundance of [M-C6H5]+and [M-C6H4Y]+ions in the electron ionisation spectra of the substituted benzophenones, are compared with those obtained by previous methods. Various refinements of the method are considered, including reducing the ionising electron energy, making allowance for the relative abundance of ions such as C6H5+and C6H4Y+, which may be formed to some extent by secondary fragmentation, and using substituent constants other than the standard σ constants. The reaction constant, ρ, of 1.08, which is in good agreement with that deduced previously, is consistent with a considerable reduction in electron density (corresponding to an increase in positive charge) at the carbon of the carbonyl group during fragmentation. This method has been successfully extended to the corresponding cleavage of 12 ionised substituted dibenzylideneacetones, YC6H4CH=CHCOCH=CHC6H5(Y=F, Cl, CH3, OCH3, CF3, and NO2), which may fragment to form either a substituted cinnamoyl cation, [YC6H4CH=CHCO]+, or the cinnamoyl cation, [C6H5CH=CHCO]+. The derived ρ value of 0.76 indicates that the substituent, Y, influences the stability of the cinnamoyl cation somewhat less strongly than it does the analogous benzoyl cation.

Publisher

SAGE Publications

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3