Using aromatic polyamines with high proton affinity as “proton sponge” dopants for electrospray ionisation mass spectrometry

Author:

Wirth Marisa A1,Rüger Christopher P1,Sklorz Martin12,Zimmermann Ralf123

Affiliation:

1. Joint Mass Spectrometry Centre / Chair of Analytical Chemistry, University of Rostock, Rostock, Germany

2. Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany

3. HICE – Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health, Aerosols and Health, Neuherberg, Germany

Abstract

Proton sponges are polyamines with high proton affinity that enable gentle deprotonation of even mildly acidic compounds. In this study, the concept of proton sponges as signal enhancing dopants for electrospray ionisation is presented for the first time. 1,8-Bis(dimethylamino)naphthalene (DMAN) and 1,8-bis(tetramethylguanidino)naphthalene (TMGN) were chosen as dopants, using methanol and acetonitrile/methanol as solvents. Individual standard compounds, compound mixtures and a diesel fuel as a complex sample matrix were investigated. Both proton sponges enhanced signal intensities in electrospray ionisation negative mode, but TMGN decomposed rapidly in methanolic solution. Significantly higher signals were only achieved using the acetonitrile/methanol mixture. On average a more than 10-fold higher signal intensity was measured with 10−3 mol l−1 DMAN concentration. A stronger signal increase of alcohol functionalities was observed compared to acid functionalities. All compound classes which were detected in the diesel fuel (CH– and CHOx–class) received roughly 100-fold higher signal intensities when using DMAN as a dopant. Furthermore, the number of detected compounds as well as the double bond equivalent of the detected compounds increased. The compound class distribution shifted when adding DMAN and the formerly dominant CHO2–, CHO3–, and CHO4– classes received similar relative intensities as formerly less accessible classes. The findings depict DMAN as a promising additive for electrospray ionisation negative analysis of at least mildly acidic compounds, even within complex sample material.

Publisher

SAGE Publications

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3