Identification and characterization of stress degradation products of ibrutinib by LC-UV/PDA and LC-Q/TOF-MS studies

Author:

Mondal Bidisha1,Bali Alka1ORCID,Sharma Tanvi1

Affiliation:

1. University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study, Panjab University, Chandigarh, India

Abstract

The anticancer drug ibrutinib was subjected to stress degradation studies under the ICH-prescribed hydrolytic, photolytic, oxidative and thermal stress conditions, and its degradation behavior was studied. A significant degradation was noted for the drug under acidic/alkaline hydrolytic, acid/alkaline photolytic, and oxidative conditions. The UPLC-UV/PDA studies revealed the generation of six degradation products (I–VI), and these were adequately resolved from the drug under the developed chromatographic conditions over a Kinetex® C18 (100 mm×4.6 mm; 2.6 μm) column employing isocratic elution method. Detection wavelength was selected as 289 nm. The UPLC-UV/PDA method conditions were extrapolated to UPLC-MS/TOF studies. All the six degradation products were found to be ionized in the total ion chromatogram, and the products could be identified and characterized from their mass spectral data. The possible degradation route of ibrutinib leading to generation of various products was also postulated.

Funder

University Grants Commission

Publisher

SAGE Publications

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3