Experimental evidence that electrospray-produced sodiated lysophosphatidyl ester structures exist essentially as protonated salts

Author:

Colsch Benoit1ORCID,Damont Annelaure1,Junot Christophe1ORCID,Fenaille François1,Tabet Jean-Claude12

Affiliation:

1. CEA-INRA UMR 0496, DRF/Institut Joliot/SPI, Université Paris-Saclay, MetaboHUB, France

2. Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Paris, France

Abstract

Sodiated lysoglycerophosphatidylethanolamine (LGPE) and lysoglycerophosphatidylcholine (LGPC) species dissociate under low collision energy by covalent bond cleavage resulting in product ions with either sodium retention or without sodium retention. For explaining these fragmentations, sodium chelation by heteroatoms (as charge-solvated structures) is often considered, and consequently, under keV collision conditions, sodium is “spectator” of cleavages (charge remote fragmentation). However, cleavage of such charge-solvated forms under low-energy conditions should result in sodium desolvation rather than covalent bond cleavage. In the present study, protonated salts are proposed as the main representative structures of the sodiated LGPE and LGPC forms. These structures are generated from sodiation of zwitterionic and betaine forms of LGPE and LGPC molecules, respectively. Experimental evidence to determine which structure is involved in the dissociations is provided, especially by comparing the dissociation of LGPL sodiated forms with that of sodiated polyethylene glycols. Energy-resolved mass spectrometry breakdown experiments were performed on a quadrupole time-of-flight instrument to demonstrate that both LGPE and LGPC sodiated forms exist as protonated salt structures. From such structures, proton migration by prototropy can result in different bond cleavages whereas the salt moiety remains spectator of these processes.

Publisher

SAGE Publications

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3