Detection of Provasopressin in Invasive and Non-invasive (DCIS) Human Breast Cancer Using a Monoclonal Antibody Directed against the C-terminus (MAG1)

Author:

Keegan Brendan P.1,Memoli Vincent A.1,Wells Wendy A.1,North William G.1

Affiliation:

1. Department of Physiology (B.P.K., W.G.N.) and Pathology (V.A.M., W.A.W), Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.

Abstract

The provasopressin protein (proAVP) is expressed by invasive breast cancer and non-invasive breast cancer, or ductal carcinoma in situ (DCIS). Here we demonstrate the ability of the monoclonal antibody MAG1 directed against the C-terminal end of proAVP to identify proAVP in all cases examined of human invasive cancer and DCIS (35 and 26, respectively). Tissues were chosen to represent a relevant variation in tumor type, grade, patient age, and menopausal status. By comparison, there was 65% positive staining for estrogen receptor, 61% for progesterone receptor, 67% for nuclear p53, and 39% for c-Erb-B2 with the invasive breast cancer sections. Reaction with the normal tissue types examined (67) was restricted to the vasopressinergic magnocellular neurons of the hypothalamus, where provasopressin is normally produced, and the posterior pituitary, where these neurons terminate. The breast epithelial tissue sections on the tissue microarray did not react with MAG1. Previously, we demonstrated that polyclonal antibodies to proAVP detected that protein in all breast cancer samples examined, but there was no reaction with breast tissue containing fibrocystic disease. The results presented here not only expand upon those earlier results, but they also demonstrate the specificity and effectiveness of what may be considered a more clinically-relevant agent. Thus, proAVP appears to be an attractive target for the detection of invasive breast cancer and DCIS, and these results suggest that MAG1 may be a beneficial tool for use in the development of such strategies.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3